

Welcome to OdooPBX’s documentation!

NEW DOCUMENTATION IS HERE: https://docs.odoopbx.com

This is kept here for those who come here from search engines.

Pls go to https://docs.odoopbx.com.

Index

CLI Reference

Odoo PBX CLI - a tool to manage Odoo PBX installations.

To get the latest CLI options run odoopbx --help:

Usage: odoopbx [OPTIONS] COMMAND [ARGS]...

Options:
 --help Show this message and exit.

Commands:
 call Call a command.
 enable Enable a service.
 getconf Get configuration option value.
 install Install a service / all services
 run Run service.
 show Show information.
 start Start a service.
 stop Stop a service.

To be described….

Installation

Before using Odoo Asterisk PBX addons you must install the middleware Agent that
connects to both Odoo & Asterisk and works as a bridge between them.

Installation requirements:

	python3

	python3-pip

	python3-apt

	python3-git

	curl, iptables & ipset

Here is an example how to install Odoo PBX Agent on Ubuntu 18.04:

apt install python3 python3-pip python3-apt python3-git curl iptables ipset
pip3 install odoopbx

Now you have Odoo PBX Agent installed.

Configuration

Configuration files are located /etc/odoopbx/.

You have to adjust at least Odoo & Asterisk settings:

	/etc/odoopbx/odoo.conf

	/etc/odoopbx/asterisk.conf

Test run

After you put your own Odoo & Asterisk settings in /etc/odoopbx/ it’s time to test them:

odoopbx run agent

Check the Agent output printed on the screen. There should be no errors on start.

Here is an example of normal start where you can see that Agent is connected to both Odoo & Asterisk:

Press CTRL+C and enable the Agent to be started as service.

odoopbx enable agent

That’s all!

Enjoy!

Roadmap

The project roadmap:

	OdooPBX addons

	Asterisk Dialer

	Asterisk Menu Builder

	Asterisk Queues

Troubleshooting

Under construction

Upgrade

Usually when new release is out users might want to update.

Both Odoo modules and Asterisk agent should be updated.

Modules update

He is the simple procedure:

	Make a copy of previous modules.

	Replace old modules with new ones.

	Restart Odoo, go to Apps menu, find Asterisk Common (PBX connector) and click to upgrade it.
It will upgrade itself and the dependent modules.

Agent update

To update the Agent just upgrade the odoopbx CLI:

pip3 install --upgrade odoopbx

Next restart the service:

odoopbx stop agent
odoopbx start agent

Special notes

Upgrading from remote_agent & kv_cache

Latest addons do not depends on remote_agent and kv_cache modules.
And there is a special procedure to upgrade.

	Get the latest asterisk_* modules.

	Do not remove kv_cache & remote_agent.

	Go to Odoo - Apps in developer mode and Update apps list.

	Find remote_agent & kv_cache modules and uninstall them.
Warning! When you click uninstall no dependencies should be proposed for deleting.
If Odoo propsed asterisk_* addons to also be deleted that means you did copy new asterisk_* modules.

	Find Asterisk Common (PBX Connector) and click to upgrade it.

	Now it’s safe to remove kv_cache & remote_agent from addons folder.

Addons

Here you can find documentation on different Asterisk Odoo addons.

Asterisk Common (PBX Connector)

A base module used by all other addons

	Asterisk Common (PBX Connector):

	Is the Odoo connection endpoint for the Asterisk Agent.

	Adds click2dial buttons to partner forms.

	Adds Asterisk dialplan related controllers to query and set caller ID names from Odoo.

Asterisk Calls modules

Call tracking and monitoring modules.

	Asterisk Calls:

	Keeps calls history & voice recordings in Odoo.

	Adds active calls monitoring views.

	Asterisk Calls CRM - an integration addon between Odoo CRM and Asterisk Calls. Features:

	Links CRM leads and calls.

	Creates leads on incoming calls.

	Asterisk Calls Multi PBX addon - a small addon used when you have many Asterisk servers connected to one Odoo instance.

Asterisk Base modules

Full featured Asterisk PBX management from Odoo!

	Asterisk Base - a base module with WEB .conf editor, Asterisk CLI in WEB, and more.

	Asterisk Base SIP addon - SIP users and trunks management.

	Asterisk Base Queues - Queues management.

Dialplans

Read-only Dialplans

Some dialplans are used in different dialplan templates and if removed or get broken
will cause the whole system to fail.

So these dialplans are protected from changes. But sometimes it can be required to adjust
such a dialplan so below is a procedure how to do it.

	Activate the developer mode.

	Edit dialplan form and add is_read_only field there. Save.

	Make changes in the dialplan. Save. Test.

	Edit dialplan form again and remove is_read_only field. Save.

Partner lookup dialplan

This dialplan is used to set the caller ID name for calls from trunks.

The dialplan adds global variable ODOO_URL so you should change it after installation.

TODO: Implement dynamic variables so that ODOO_URL can be taken from ir.config.settings from web.base.url.

Asterisk Base

Contents

	Asterisk Base

	Introduction

	Installation options

	Diagram

	Agent

	Asterisk

	Docker deployment

	Installation types

	All-in-one

	First run

	Check

	Additional proxy service (optional)

	Odoo-exists

	Odoo configuration

	Agent configuration

	Asterisk & Console configuration

	Run

	Asterisk-exists

	Odoo

	Asterisk configuration

	Agent configuration

	Run

	All-exists

	Usage documentation

	First steps

	Download Asterisk config files

	Configure the console

	Create a special Odoo user account for Agent

	Odoo VOIP addon configuration

Introduction

This module is a foundation of a set of applications around Asterisk IP-PBX that are
used to manage phone business logic.

Different addons add different features so every company can use only required functionality.

Base module provides a common ground for all other.

Installation options

This document covers three different types of installation:

	All-in-one setup - recommended for those who is new to Odoo and/or Asterisk or those
who would like to get a fast start and begin to learn the product without spending any time
on installation steps.

	All-exists - when you have both Odoo and Asterisk setup and would like to migrate
your current Asterisk installation to Asterisk Base.

	Odoo-exists - when you have Odoo and no Asterisk is depoyed yet so you will use
Asterisk Base supplied Asterisk installation.

	Asterisk-exists - when you have Asterisk deployed and would like to deploy Odoo and
migrate your Asterisk installation to Asterisk Base.

Actually all the above options are nearly the same just putting more aspect on different combination of
services.

So we start first with describing all the components that make up the solution and then come to combining
different pieces together.

Diagram

To connect Odoo & Asterisk a special Asterisk Odoo Agent must be deployed.

[image: https://apps.odoo.com/apps/modules/13.0/asterisk_base/img/asterisk-base-dia.png]

Agent

The Agent connects to Asterisk Manager Interface (AMI) and listen for events like Newchannel, Cdr,
Hangup, etc. These events are sent to Odoo using odoorpc library.

The Agent home page is located here [https://gitlab.com/odooist/asterisk-odoo-agent].

The Agent is based on Nameko [http://nameko.io] framework and requires a local AMQP broker running.
RabbitMQ is recommended.

Agent can be run in any place. But the prefereable one is the same server where Asterisk is installed.
In this case Agent can have access to call recording files and can forward them to Odoo.

Notice: you can check out all default Agent’s settings here [https://gitlab.com/odooist/asterisk-odoo-agent/-/blob/master/deploy/config.yml].

Asterisk

You must setup an AMI account for the Agent to connect. It’s recommened to use permit / deny
options and limit the account to Agent’s IP address (usually 127.0.0.1/8).

Docker deployment

Docker compose deploy is the official installation method. Make sure that your docker service is set to run on boot.

Deployment steps:

	Create an empty deployment directory and enter there. Download here the following files:

	Download [https://gitlab.com/odooist/asterisk_base/snippets/1950385] the docker-compose.yml.

	Download [https://gitlab.com/odooist/asterisk_base/snippets/1958351] the Caddyfile (proxy service settings).

	Download asterisk_base, kv_cache, remote_agent modules and save tem in addons folder in the current directory.

	Optionally create your odoo.conf file (you can do this afterwards).

	Edit docker-compose.yml (or override in docker-compose.override.yml) and adjust your settings according to your type of Installation (see below).

	Run docker-compose up ... with services your require (see Installation types below).

All above as shell commands:

curl -o docker-compose.yml https://gitlab.com/odooist/asterisk_base/snippets/1950385/raw
curl -o Caddyfile https://gitlab.com/odooist/asterisk_base/snippets/1958351/raw
mkdir addons
Put asterisk_base, kv_cache, remote_agent and other asterisk modules in addons folder.

Installation types

All-in-one

With this type of installation your have all services started. The server must have at least 1Gb of RAM
but 2G RAM is garanteed to work well.

This downloaded files is a configuration default for all-in-one install.

First run

First we need to initialize the database and install Odoo modules.

docker-compose up -d rabbitmq db odoo console asterisk

Wait a minute or some more until the database is fully initialized.
Then open the Odoo administration page at http://127.0.0.1:8072/web and go to Apps menu.
Find there Asterisk Base application and install it.

Then start the Asterisk Odoo Agent service:

docker-compose up -d agent

Check

To make sure all is up and runnig check the process and logs:

See running services
docker-compose ps
See service logs
docker-compose logs --tail=100 odoo
docker-compose logs --tail=100 agent

Now go to Odoo administration page to Agents menu and ping the Asterisk agent.

Additional proxy service (optional)

For better usability and security (HTTPS) it’s recommended to put Odoo (if running Odoo)
and Console (if running Asterisk) services behind proxy server.

Also when your Odoo is served under HTTPS it is required by browsers to also use WSS (Secure Web Socket) connection
to the console service.

The provided docker-compose.yml file contains a proxy service based on Caddy.

The provided Caddyfile file contains its settings that you have to adjust.

Odoo-exists

This type of installation assumes that your have Odoo deployed. That means
there is no need to start db and odoo services.

Odoo configuration

Do a database backup before installation (just in case :-P).

Long polling

Be sure to enable Odoo long polling feature and make sure it is working.

If You see in your Odoo logs Exception: bus.Bus unavailable message it means
you did not configure it correctly.

To activate long polling and have enougth workers for this app start Odoo with
at least –workers=4 or set it in odoo.conf:

Attention! This is just an example of conf file options that must be set! Don’t throw away
your own options!!!

Be sure to have the following record in your Odoo startup logs:

Agent system account

The Agent needs an odoo system account to work on.

The recommendation is to setup a special Odoo account with very limited access rights
(and also save a license on Odoo Enterprise) as guided below:

	Create a new Odoo user with name asterisk with User Type Portal.

	Set a new password. Use it to configure ODOO_USER and ODOO_PASS
in your docker-compose.yml agent’s section.

	Go to Agents application and create a new Agent. Select asterisk user. Save.

	Click Adjust Permissions button on form header.

Now Agent will use portal type account that is not subject to licensing and does
not have any permissions accept required to do with PBX management.

Set account time zone

Asterisk sends requests with date and time in its server’s time zone. You should set
asterisk account time zone in user’s preferences to value set in Asterisk server.

Configure users and groups

Users who manage Asterisk PBX must have Asterisk -> Base Admin permission.

Agent configuration

Adjust the following options in your docker-compose.yml.

Default settings

This are the default Agent configuration options:

- ODOO_HOST: 127.0.0.1
- ODOO_PORT: 8069
- ODOO_USER: asterisk
- ODOO_PASS: asterisk
- ODOO_DB: ${ODOO_DB:test}
- ODOO_USE_SSL: no
- ODOO_BUS_ENABLED: yes
- ODOO_BUS_PORT: 8072

Odoo behind proxy

And below are Agent’s configuration options for Odoo running behind proxy with HTTPS:

- ODOO_HOST: my.odoo.com
- ODOO_PORT: 443
- ODOO_DB: production
- ODOO_USE_SSL: yes
- ODOO_BUS_ENABLED: yes
- ODOO_BUS_PORT: 443

Odoo.sh

The Agent uses long polling to receive commands from Odoo
but Odoo.sh does not allow polling from remote script so special Agent configuration is required.

So Odoo will make HTTP requests to connect to the Agent.

Also it is strictly recommended to run a HTTPS proxy server in front of the Agent’s builtin WEB server to
be protected from traffic sniffing.

- ODOO_HOST: my.project.name.odoo.com
- ODOO_PORT: 443
- ODOO_USER: asterisk
- ODOO_PASS: set-your-password
- ODOO_DB: my-project-name-master-123456
- ODOO_USE_SSL: yes
- ODOO_BUS_ENABLED: no
- WEB_SERVER_ENABLED=yes
- WEB_SERVER_ADDRESS=0.0.0.0:40000

Your should make the Agent’s port 40000 accessible from Odoo and also configure the Agent in Odoo.

Asterisk & Console configuration

For both asterisk and console services set ODOO_URL to point to your Odoo server.

Example:

- ODOO_URL=https://my.project.name.odoo.com
Or when not using a proxy:
- ODOO_URL=https://my.odoo.com:8069

Run

In this type of scenario you only need to run the following services:

docker-compose up -d rabbitmq asterisk agent console

Asterisk-exists

In this scenario you have an existing Asterisk installation and need to setup Odoo.

Some of services (db, odoo) shoud be run on one server, and others
(rabbitmq, agent, console) should be run from your existing Asterisk server.

You can use one docker-compose.yml file or break it into 2 parts.

Odoo

Here you just run db and odoo services:

docker-compose up -d db odoo

Asterisk configuration

You need to create an AMI account for the Agent.

Agent configuration

You need to set the following configuration options:

ASTERISK_AMI_HOST: your.asterisk.ip.or.hostname
ASTERISK_AMI_PORT: 5038
ASTERISK_AMI_USER: odoo
ASTERISK_AMI_PASS: odoo

Replace AMI host to your Asterisk address and user & pass to values set in Asterisk manager.conf.

Run

You need to start rabbitmq, agent, and console services:

docker-compose up -d rabbitmq agent console

All-exists

In this type of scenario you do not need to setup and run odoo and db services.

So you should run only Agent on your Asterisk server and point it to your Odoo and Asterisk:

See the above sections as they contain all the required information on what settings to configure.

Usage documentation

This section is going to be created basing on questions from the first users in our chat channels at:

	Telegram [https://t.me/joinchat/FsCgbhJflWdOvqoLljrqSA]

	Slack [https://join.slack.com/t/odooist/shared_invite/zt-cm8x0neb-dAdq7f~zp4wVzhxqgiYrWg]

First steps

When Odoo modules are installed and the Asterisk Odoo agent connected it’s time to start a party!

Download Asterisk config files

Go to PBX -> Configuration -> Servers menu open the default server
and click Download configs button.

After download complete message go to PBX -> Configuration -> Files and see your config files.
Notice that by default Updated filter is selected that shows only files that have changes.

Configure the console

Adjust the console URL if required.

If you do not use provided Caddy proxy service console URL usually looks like this:

ws://host.address:8001

When using proxy with HTTPS it looks like this:

wss://host.address/console

Note wss and /console.

Create a special Odoo user account for Agent

By default admin user is used to setup a default Asterisk server.
It’s strictly recommended to create a separate user for the Agent only in Portal group.

Go to Agents menu and select the current Agent, change the user and click Adjust permissions
to add agent permissions to that account.

Odoo VOIP addon configuration

You can connect Odoo VoIP WebRTC softphone to Asterisk Base with the following settings:

	PBX Server IP: host.address.com:port

	WebSocket: wss://host.address.com/ws

Note: make sure you have Caddy proxy service up as it proxies web socket connection.

Asterisk Base Queues

ChangeLog

1.1

	Initial release

Asterisk Base SIP addon

Installation

	Install Asterisk Base.

	Install Asterisk Base SIP.

If you want relative dates for SIP registration and status (peer registered X seconds/minutes/hours ago)
install humanize:

pip3 install humanize

Restart Odoo.

Usage

Users

Users are SIP peers that your create to connect your users to the Asterisk.

Trunks

Trunks are SIP peers that your create to connect to SIP providers of local and international calls
and local numbers.

Mass actions

Route groups example: [[6, 0, [1]]]

Changelog

1.1

Initial release.

Asterisk Calls

Contents

	Asterisk Calls

	Concept

	Installation check list

	Asterisk

	Dialplan configuration

	FreePBX setup

	Agent

	Installation

	Test run

	Production run

	Odoo.sh installation

	Odoo

	Required modules

	Python packages

	Long polling

	Asterisk system account

	Set account time zone

	Configure users and groups

	Upgrade

	Support

	Change Log

	3.3

	3.2

	3.1

	3.0.5

	3.0.4

	3.0.3

	3.0.2

	3.0.1

Concept

Here is the architecture of the solution:

[image: ../../_images/asterisk_calls_dia.png]

Installation check list

	Configure Asterisk:

	Set system name.

	Create manager (AMI) account for the Agent.

	Activate CDR manager module.

	Configure dialplan to set caller id name from Odoo (or external callerid source for FreePBX).

	Install asterisk_calls Odoo addon on Odoo server.

	If required, install the lameenc package on Odoo server: pip3 install lameenc

	Deploy the Agent service on Asterisk server or nearby.`

	Configure Asterisk Calls application (in Odoo):

	Map Asterisk extensions to Odoo users.

	Decide on call recording storage: db or Odoo data’s folder (default).

	Set Asterisk IP address to restrict caller ID name query.

For more details see below.

Asterisk

You need is to allow the Agent to connect to your Asterisk server AMI port (usually 5038).
This app does not use asterisk database connection to Odoo.

Here are the examples of required configuration options.

asterisk.conf:

[options]
systemname = asterisk ; Set Asterisk system name here.

cdr.conf:

[general]
enable=yes
unanswered = yes
congestion = yes

cdr_manager.conf:

[general]
enabled = yes

[mappings]
start => started
answer => answered
end => ended
linkedid => linkedid
sequence => sequence

manager.conf:

[general]
enabled = yes
webenabled = no ; Asterisk calls does not use HTTP interface
port = 5038
bindaddr = 127.0.0.1

[odoo]
secret=odoo
displayconnects = yes
read=call,dialplan,cdr,user
write=system,call,originate
deny=0.0.0.0/0.0.0.0
permit=127.0.0.1/255.255.255.0

Important! For security reasons always use deny/permit options in your manager.conf.
Change permit option to IP address of your Asterisk server if agent is not started on the same box.

Dialplan configuration

Here is the example dialplan demonstration integration levels:

[globals]

[general]

; Set connection options for curl.
[sub-setcurlopt]
exten => _X.,1,Set(CURLOPT(conntimeout)=3)
exten => _X.,n,Set(CURLOPT(dnstimeout)=3)
exten => _X.,n,Set(CURLOPT(httptimeout)=3)
exten => _X.,n,Set(CURLOPT(ssl_verifypeer)=0)
exten => _X.,n,Return

; Get caller ID name from Odoo, replace odoo to your Odoo's hostname / IP address
; Arguments:
; - number: calling number, strip + if comes with +.
; - db: Odoo's database name, ommit if you have one db or use dbfilter.
; - country: 2 letters country code, See https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
; If country code is omitted Asterisk Agent's Odoo account's country code will be used for phonenumbers parsing.
[sub-setcallerid]
exten => _X.,1,Gosub(sub-setcurlopt,${EXTEN},1)
; You need to cut leading + on numbers incoming from trunks before passing it to get_caller_name.
exten => _X.,n,Set(CALLERID(name)=${CURL(http://odoo:8069/asterisk_calls/get_caller_name?number=${CALLERID(number)})})
exten => _X.,n,Return

; Get partner's manager channel if set.
[sub-dialmanager]
exten => _X.,1,Set(manager_channel=${CURL(http://odoo:8072/asterisk_calls/get_partner_manager?number=${CALLERID(number)})})
exten => _X.,n,ExecIf($["${manager_channel}" != ""]?Dial(${manager_channel}/${EXTEN},60,t))
exten => _X.,n,Return

; Call from DID numbers e.g. PSTN numbers connected to Asterisk box.
[from-sip-external]
; Set partner's caller name
exten => _X.,1,Gosub(sub-setcallerid,${EXTEN},1)
; Record call
exten => _X.,n,MixMonitor(${UNIQUEID}.wav)
; Try to connect to manager
exten => _X.,n,Gosub(sub-dialmanager,${EXTEN},1)
; Put in the Queue.
exten => _X.,n,Queue(sales)

; This macro is used to send DTMF digits on outgoing calls to partner if exten is specified.
[post-dial-send-dtmf]
exten => s,1,NoOp(DTMF digits: ${dtmf_digits})
same => n,ExecIf($["${dtmf_digits}" = ""]?Return)
same => n,Wait(${dtmf_delay})
same => n,SendDTMF(${dtmf_digits})
same => n,Return

[from-internal]
; Activate call recording.
exten => _X.,1,MixMonitor(${UNIQUEID}.wav)
; Local users calling
exten => _XXXX,2,Dial(SIP/${EXTEN},30)
; Outgoing calls pattern
exten => _XXXXX.,2,Dial(SIP/provider/${EXTEN},30,TU(post-dial-send-dtmf))

FreePBX setup

Setup and configuration videos are available here [https://www.youtube.com/playlist?list=PLjmYA79yb5AR3hkYlLdCdgc36dievvSOm].

Agent

The Agent connects to Asterisk Manager Interface (AMI) and listen for events like Newchannel, Cdr,
Hangup, etc. These events are sent to Odoo using odoorpc library.

The Agent home page is located here [https://gitlab.com/odooist/asterisk-odoo-agent].

The Agent is based on Nameko [http://nameko.io] framework and requires a local AMQP broker running.
RabbitMQ is recommended.

Agent can be run in any place. But the prefereable one is the same server where Asterisk is installed.
In this case Agent can have access to call recording files and can forward them to Odoo.

Installation

Docker compose deploy [https://hub.docker.com/repository/docker/odooist/asterisk-odoo-agent]
is the official installation method. Make sure that your docker service is set to run on boot.

Please refer to your Linux distribution documentaion on how to install docker and docker-compose.

Follow the guide below to get the Agent working.

Installation steps:

	Install docker and docker-compose system packages.

	Download [https://gitlab.com/odooist/asterisk_calls/snippets/1947981] docker-compose.yml. Adjust this file to your environment.

	Create addons folder in the curent directory and put there
asterisk_calls, remote_agent, kv_cache and other asterisk modules you have.

The above steps as shell commands:

curl -o docker-compose.yml https://gitlab.com/odooist/asterisk_calls/snippets/1947981/raw
mkdir addons

Test run

To test start first RabbitMQ in background and Agent in foreground:

docker-compose up -d rabbitmq
docker-compose up agent

CTRL+C to interrupt.

docker-compose down

Production run

For production start the Agent as follows:

docker-compose up -d

Odoo.sh installation

The Agent uses long polling to receive call originate command from Odoo.

Odoo.sh does not allow polling from remote script so special Agent configuration is required.

Your should set the following configuration variables:

	ODOO_BUS_ENABLED=no

	WEB_SERVER_ENABLED=yes

	WEB_SERVER_ADDRESS=0.0.0.0:40000

Now your should make the Agent’s port 40000 accessible from Odoo as Odoo will make HTTP requests to
connect to the Agent.

Also it is strictly recommended to run a HTTPS proxy server in front of the Agent’s builtin WEB server to
be protected from traffic sniffing.

Odoo

Do a database backup before installation (just in case :-P).

Required modules

	K/V Cache [https://apps.odoo.com/apps/modules/13.0/kv_cache/] - this addon is included when you download Asterisk Calls from the market.
But if you copy Asterisk Calls module from another place make sure you have also kv_cache installed.

	Remote Agent [https://apps.odoo.com/apps/modules/13.0/remote_agent/] - same as above.

Python packages

	lameenc [https://pypi.org/project/lameenc/] - this package is required for encoding call recordings to MP3. If it is not installed the recordings will be saved using the standard WAV format.

Long polling

Be sure to enable Odoo long polling feature and make sure it is working.

If You see in your Odoo logs Exception: bus.Bus unavailable message it means you did not configure it correctly.

To activate long polling and have enougth workers for this app start Odoo with at least –workers=4 or set it in odoo.conf:

Attention! This is just an example of conf file options that must be set! Don’t throw away
your own options!!!

Be sure to have the following record in your Odoo startup logs:

Asterisk system account

The Asterisk Agent needs an odoo system account to work on.

During the asterisk_calls module installation a new Odoo account asterisk is created.

This is a special Odoo account with very limited access rights and of portal type
to save a license on Odoo Enterprise.

It is recommented to change asterisk account password in Odoo and also adjust the Agent
ODOO_PASS setting.

Set account time zone

Asterisk sends call records in its server’s time zone. You should set
asterisk_service account time zone in user’s preferences to value set in Asterisk server.

To see time zone settings for account you should activate Odoo developer mode.

Configure users and groups

Map Odoo users with Asterisk user’s extensions.

Users who use Asterisk Calls must have Asterisk Calls User permission.

For SIP users you can specify SIP alert-info header to enable auto answer feature.
Check you SIP phone manuals for that.

After you mapped Odoo users with Asterisk extensions users can use click to call feature.

When you map Odoo user to Asterisk extensions in Asterisk Calls -> Users menu
user is automatically added to Asterisk Calls group.

When you delete Asterisk user mapping Asterisk call permission is automatically removed from Odoo user.

Notice! After you change user extensions mapping reload the WEB client (press F5) to catch the change!

Upgrade

Upgrade steps:

	Update Odoo addon:

	Backup previous version of this module.

	Copy a new version of this module.

	Update Asterisk Calls application in Odoo Apps menu.

	Restart Odoo.

	Update the Agent:

	Edit your docker-compose.yml and set a new image version (see Changelog section of this manual).

	Run docker-compose pull

	Update RabbitMQ first docker-compose up -d rabbitmq

	Run docker-compose stop agent; docker-compose rm agent; docker-compose up -d

	See the log docker-compose logs --tail=100 agent

If something goes wrong during the upgrade process replace module folder with the previous one and
contact support.

Support

Module price DOES cover support on installation :-)

Please get in contact if you have any issue on getting it to work.

If you need more features or found some bugs please send your requests to odooist@gmail.com.

You can also visit the project open list of issues and new features and submit your
ideas of votes on Gitlab [http://gitlab.com/odooist/asterisk_calls/issues/].

This module requires running Astrerisk instance (docker deploy included for new installations).

Network connection between Asterisk and Odoo instance is requied.
Please refer to Asterisk documentaion [https://wiki.asterisk.org/wiki/display/AST/Home] for Asterisk configuration.

Asterisk installation and support is not included in the price of this module.

If you are a novice in Asterisk/FreePBX and do not know how to complete Asterisk part of
installation you can request paid support to help you setup your PBX.
Please submit a request here.

Change Log

3.3

	Added support for calls MP3 encoding

3.2

	Active calls and calls history permissions fix. Now users have access to all calls
of their partners event done by other users.
Before users had access only to their own originated or taken calls.

	/asterisk_calls/get_caller_tags - now your can get partner tags in Asterisk dialplan for
advanced call routing. See docs above.

	Calls popup widget if not needed can be disabled from settings now.

	Supervisor role added with access to all active channels and call history (to monitor all calls).

3.1

This release finalizes the Agent refactoring and deploy.

It is strictly recommended to re-install agent using docker style described in the documentaion.

Also it is recommended to contact the author in support chat group or email before upgrade.

3.0.5

	Click2call buttons got bigger so it’s more easy to click on them :-)

	AMI messages order fix (update your config.yml file, see EVENT_MAP delays).

	Calls are now consolidated on company account with grouping by contacts.

	Popup widget with basic functionality implemented.

	Click2call calls are 100% matched by passing back model / res_id.

	Active calls management operations fix.

	Dial partner extension as DTMF ported from 12.0.

3.0.4

	Call recording implemented. See config.yml from deploy/agent
(Hangup event save_call_recording added).

	Small fixes and optimizations.

Update both Odoo and Asterisk Agent.

3.0.3

Work still in progress….
Update both Odoo and Asterisk Agent.

	Call notification fixes.

	Nameko-odoo now supports calling Nameko services.

See config.yml for changes, added OriginateResponse handler, do not copy-paste from example,
see config.yml in deploy/agent folder.

3.0.2

As 13.0 is not just a port from 12.0 but a complete Agent refactoring the work is in progress :-)

	Get partner name bug fix.

	Asterisk diaplan examples look nice.

	Asterisk Calls Agent refactoring (Update your config.yml!)

	Events now are defined on Agent level (removed event model from Odoo).

	Some minor changes.

3.0.1

Initial fork from 12.0 v2.3.

	Removed remote_agent dependency,

	Asterisk calls agent full refactoring (and new way of installation via pypi).

Asterisk Calls CRM

Contents

	Asterisk Calls CRM

	Change Log

	3.1

	1.2

	1.1

Change Log

3.1

Asterisk Calls CRM refactored for Asterisk Calls 3.x branch.

1.2

	Updated to work with Asterisk Calls 1.0.9.

	Added search lead by connected line number channel field.

	Added a button to channels list to open opportunity with one click when present.

	Search number with + before number feature added.

1.1

	Initial release

Asterisk Calls Multi PBX addon

Changelog

3.1

Refactoring to adjust for Asterisk Calls 3.x branch.

Follow these steps to upgrade:

	Export your users mappings (Calls -> Confoguration -> Users).

	Upgrade the module.

	Edit your users mappings and select user’s system name.

1.0

Initial release.

Asterisk Common (PBX Connector)

Contents

	Asterisk Common (PBX Connector)

	Features

	Setup

	Asterisk Manager Interface (AMI)

	Dialplan configuration

	Common settings

	Set caller name from Odoo

	Get partner’s manager (salesperson) channel

	Incoming call handling

	FreePBX setup

	Odoo.sh installation

	Change the Agent password

	Long polling

	Asterisk system account

	Set account time zone

	Configure users and groups

	Change Log

	1.4

Features

This module is the primary and base for the rest Asterisk related addons. Its features are the following:

	Adds a click to dial button to Partner form.

	Adds controller to get partner name and set as caller ID name in Asterisk.

	Adds a controller to get caller’s salesperson SIP channel and connect customers directly to their managers.

	Adds a controller to organize differentiated telephone customer service by quering customer tags from Asterisk dialplan
(e.g. put VIP customers in the VIP queue or in first place).

On the other side (Asterisk one) this addons addon requires the Agent to be setup and running.

Setup

Asterisk Manager Interface (AMI)

You need is to allow the Agent to connect to your Asterisk server AMI port (usually 5038).

Here are the examples of required configuration options.

manager.conf:

[general]
enabled = yes
webenabled = no ; Asterisk calls does not use HTTP interface
port = 5038
bindaddr = 127.0.0.1

[odoo]
secret=odoo
displayconnects = yes
read=all
write=all
deny=0.0.0.0/0.0.0.0
permit=127.0.0.1/255.255.255.0

Important! For security reasons always use deny/permit options in your manager.conf.
Change permit option to IP address of your Asterisk server if agent is not started on the same box.

If you use Asterisk Base module it’s ok to put read=all and write=all.

But if you use your own PBX manager (like FreePBX, etc) then you can just set minimal
security settings:

read=call,dialplan,cdr,user,agent,system
write=system,call,originate,agent

Dialplan configuration

Here are some examples of integration levels.

Common settings

[globals]
ODOO_URL=http://odoo:8069

; Set connection options for curl.
[sub-setcurlopt]
exten => _X.,1,Set(CURLOPT(conntimeout)=3)
exten => _X.,n,Set(CURLOPT(dnstimeout)=3)
exten => _X.,n,Set(CURLOPT(httptimeout)=3)
exten => _X.,n,Set(CURLOPT(ssl_verifypeer)=0)
exten => _X.,n,Return

; Partner's extension click2call e.g. +1234567890##101
[post-dial-send-dtmf]
exten => s,1,NoOp(DTMF digits: ${dtmf_digits})
same => n,ExecIf($["${dtmf_digits}" = ""]?Return)
same => n,Wait(${dtmf_delay})
same => n,SendDTMF(${dtmf_digits})
same => n,Return

Set caller name from Odoo

; Get caller ID name from Odoo, replace odoo to your Odoo's hostname / IP address
; Arguments:
; - number: calling number, strip + if comes with +.
; - db: Odoo's database name, ommit if you have one db or use dbfilter.
; - country: 2 letters country code, See https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
; If country code is omitted Asterisk Agent's Odoo account's country settings will be used for phonenumbers parsing.
[sub-setcallerid]
exten => _X.,1,Gosub(sub-setcurlopt,${EXTEN},1)
; You need to cut leading + on numbers incoming from trunks before passing it to get_caller_name.
exten => _X.,n,Set(CALLERID(name)=${CURL(${ODOO_URL}/asterisk_common/get_caller_name?number=${CALLERID(number)})})
exten => _X.,n,Return

Get partner’s manager (salesperson) channel

[sub-dialmanager]
exten => _X.,1,Set(manager_channel=${CURL(${ODOO_URL}/asterisk_common/get_partner_manager?number=${CALLERID(number)})})
exten => _X.,n,ExecIf($["${manager_channel}" != ""]?Dial(${manager_channel}/${EXTEN},60,t))
exten => _X.,n,Return

Incoming call handling

[from-sip-external]
; Set partner's caller name
exten => _X.,1,Gosub(sub-setcallerid,${EXTEN},1)
; Record call
exten => _X.,n,MixMonitor(${UNIQUEID}.wav)
; Try to connect to manager
exten => _X.,n,Gosub(sub-dialmanager,${EXTEN},1)
; Put here some login to handle if manager channel is busy for example put in the queue.
exten => _X.,n,Queue(sales)

[from-internal]
; Activate call recording.
exten => _X.,1,MixMonitor(${UNIQUEID}.wav)
; Local users calling
exten => _XXXX,2,Dial(SIP/${EXTEN},30)
; Outgoing calls pattern
exten => _XXXXX.,2,Dial(SIP/provider/${EXTEN},30,TU(post-dial-send-dtmf))

FreePBX setup

To use Odoo contacts as caller ID names there is 2 options:

	Install CallerID Lookup Sources Module [https://wiki.freepbx.org/display/F2/CallerID+Lookup+Sources+Module].

	Use custom dialplans with CURL function as described above.

Odoo.sh installation

The Agent uses long polling to receive call originate command from Odoo.

Odoo.sh does not allow polling from remote script so you should enable HTTP listener on the Agent.

Now your should make the Agent’s HTTP port (default 30000) accessible from Odoo as Odoo will make HTTP requests to
connect to the Agent.

Also it is strictly recommended to run a HTTPS proxy server in front of the Agent’s builtin WEB server to
be protected from traffic sniffing.

Odoo

Do a database backup before installation (just in case :-P).

During the installation process Admin user is automatically added to
Asterisk Admin security group.

After installation it is strictly recommended to change default password the Agent
connects to your Odoo and also set IP address of your Asterisk server to protect from unauthorized access.

Change the Agent password

Go to PBX -> Settings -> Agents menu.

[image: ../../_images/agent_change_pass.gif]

Long polling

Be sure to enable Odoo long polling feature and make sure it is working.

If You see in your Odoo logs Exception: bus.Bus unavailable message it means you did not configure it correctly.

To activate long polling and have enougth workers for this app start Odoo with at least –workers=4 or set it in odoo.conf:

Attention! This is just an example of conf file options that must be set! Don’t throw away
your own options!!!

Be sure to have the following record in your Odoo startup logs:

Asterisk system account

The Asterisk Agent needs an odoo system account to work on.

During the asterisk_calls module installation a new Odoo account asterisk is created.

This is a special Odoo account with very limited access rights and of portal type
to save a license on Odoo Enterprise.

It is recommented to change asterisk account password in Odoo and also adjust the Agent
ODOO_PASS setting.

Set account time zone

Asterisk sends call records in its server’s time zone. You should set
asterisk_service account time zone in user’s preferences to value set in Asterisk server.

To see time zone settings for account you should activate Odoo developer mode.

Configure users and groups

Map Odoo users with Asterisk user’s extensions.

Users who use Asterisk Calls must have Asterisk Calls User permission.

For SIP users you can specify SIP alert-info header to enable auto answer feature.
Check you SIP phone manuals for that.

After you mapped Odoo users with Asterisk extensions users can use click to call feature.

When you map Odoo user to Asterisk extensions in Asterisk Calls -> Users menu
user is automatically added to Asterisk Calls group.

When you delete Asterisk user mapping Asterisk call permission is automatically removed from Odoo user.

Notice! After you change user extensions mapping reload the WEB client (press F5) to catch the change!

Change Log

1.4

	Initial release.

Remote Agent

Odoo communication framework

The purpose of this framework is to create a common base for different applications
like IoT boxes or brokers.

Its main goal is to give Odoo a way to call functions on remote side without
any additional software like message bus (Kafka, RabbitMQ, NATS, etc).

This is possible becuase Odoo itself has its own message bus using
PostgreSQL NOTIFY / LISTEN features and bus [https://github.com/odoo/odoo/tree/12.0/addons/bus] module.

Remote Agent uses Odoo’s /longpolling/poll controller to keep continuous
connection and by this way is available without a need to know its source address.
In special cases where bus is not available for remote polling (odoo.sh) HTTP channel
is used to communicate between Odoo and Agent though in this case Agent must
be directly accessible by Odoo.

Architecture

[image: ../../_images/concept.png]

Asterisk Odoo Agent

Contents

	Asterisk Odoo Agent

	Introduction

	Configuration

	Development

Introduction

Asterisk Odoo Agent is a middleware software used as a bridge between Odoo [http://odoo.com]
and Asterisk IP-PBX [http://asterisk.org].

Here is the architecture of the solution:

[image: ../_images/diagram.png]
Using this solution makes Odoo a phone applications platform as all development is
done on Odoo level so every Odoo developer can quickly and easily integrate Asterisk
features with any Odoo module.

The Agent architecture is a callback based where every callback is an Odoo method.

In many cases the Agent will just work as is without any modification like it works in
Asterisk Calls [https://apps.odoo.com/apps/modules/13.0/asterisk_calls/] application.

Though Asterisk Odoo Agent was developed as a required component for commercial module
it was decided to make the Agent open and free under LGPL license so that all the Odoo
world can benefit from it.

Configuration

Agent configuration files are stored in /etc/odoopbx.

Feel free to adjust default .conf files as you need.

Development

As was said in the very beginning development is done on Odoo layer.

The Agent will forward to Odoo specified
AMI messages [https://wiki.asterisk.org/wiki/display/AST/Asterisk+13+AMI+Events].

In order to know which AMI messages to forward your should define your
events map and include it in the config file (EVENTS_MAP).

Let’s imagine that we want to collect call details records. In this case you need to
map Cdr event to Odoo’s model and method which will receive it.

- name: Cdr
 type: AMI
 model: odoo_asterisk.call
 method: create_cdr

Now in Odoo application named odoo_asterisk (just an example) create a method
create_cdr with the following contents:

class Call(models.Model):
 _name = 'odoo_asterisk.call'
 _description = 'Call Log'

 src = fields.Char()
 dst = fields.Char()
 channel = fields.Char()
 # The rest fields are ommited...

 @api.model
 def create_cdr(self, event):
 get = event['headers'].get
 data = {
 'accountcode': get('AccountCode'),
 'src': get('Source'),
 'dst': get('Destination'),
 'dcontext': get('DestinationContext'),
 'clid': get('CallerID'),
 'channel': get('Channel'),
 'dstchannel': get('DestinationChannel'),
 'lastapp': get('LastApplication'),
 'lastdata': get('LastData'),
 'started': get('StartTime') or False,
 'answered': get('AnswerTime') or False,
 'ended': get('EndTime') or False,
 'duration': get('Duration'),
 'billsec': get('BillableSeconds'),
 'disposition': get('Disposition'),
 'amaflags': get('AMAFlags'),
 'uniqueid': get('UniqueID') or get('Uniqueid'),
 'linkedid': get('Linkedid'),
 'userfield': get('UserField'),
 'system_name': get('SystemName'),
 }
 self.create(data)
 return True

That’s it.

 _static/comment-bright.png

_images/diagram.png
-AMI actions

.

—AMI events:

IHIE)

Asterisk IP-PBX

http://odoo:8072/longpolling/poll

—

US

A N

A—

Odoo

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/agent_change_pass.gif
PBX Applications Reports Settings Supp

Extensions [Standard x|scarch...
. YAl - SGoupty - Faories -

o @ adm

] Exten T Name Exten Type Server Re
[100 & Administrator Standard Default L]
O » 500 o test Standard Default]

_images/asterisk_calls_dia.png
-AMI actions

.

—AMI events:

IHIE)

Asterisk IP-PBX

http://odoo:8072/longpolling/poll

—

US

A N

A—

Odoo

_images/concept.png
JSON-RPC over bus

Odoo does not know Agent's address and
uses bus.bus to communite

JSON-RPC over HTTPS

Odoo must be able to connect to Agent's address
and uses HTTPS POST to call RPC

Odoo

-longpolling/poll (SUB)—
SoN-RP Remote
agent
bus.busT.sendone(...) (PUB)—
JSON-RPC
Remote
agent
HTTPS|server

JSON-RPC-

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to OdooPBX’s documentation!

_static/up-pressed.png

_static/up.png

_static/plus.png

